

Deutsche Akkreditierungsstelle

Anlage zur Akkreditierungsurkunde D-K-18366-01-00 nach DIN EN ISO/IEC 17025:2018

Gültig ab: 14.07.2023

Ausstellungsdatum: 14.07.2023

Inhaber der Akkreditierungsurkunde:

MK-Kalibrierlabor GmbH Madridstraße 2, 97424 Schweinfurt

Das Kalibrierlaboratorium erfüllt die Anforderungen gemäß DIN EN ISO/IEC 17025:2018, um die in dieser Anlage aufgeführten Konformitätsbewertungstätigkeiten durchzuführen. Das Kalibrierlaboratorium erfüllt gegebenenfalls zusätzliche gesetzliche und normative Anforderungen, einschließlich solcher in relevanten sektoralen Programmen, sofern diese in den Anlagen der nachfolgend aufgeführten Teil-Akkreditierungsurkunden ausdrücklich bestätigt werden.

D-K-18366-01-01 D-K-18366-01-02

Die Anforderungen an das Managementsystem in der DIN EN ISO/IEC 17025 sind in einer für Kalibrierlaboratorien relevanten Sprache verfasst und stehen insgesamt in Übereinstimmung mit den Prinzipien der DIN EN ISO 9001.

Diese Urkundenanlage gilt nur zusammen mit der schriftlich erteilten Akkreditierungsurkunde und gibt den Stand zum Zeitpunkt des Ausstellungsdatums wieder. Der jeweils aktuelle Stand der gültigen und überwachten Akkreditierung ist der Datenbank akkreditierter Stellen der Deutschen Akkreditierungsstelle zu entnehmen (www.dakks.de)

Deutsche Akkreditierungsstelle

Anlage zur Teil-Akkreditierungsurkunde D-K-18366-01-01 nach DIN EN ISO/IEC 17025:2018

Gültig ab: 14.07.2023 Ausstellungsdatum: 14.07.2023

Diese Urkundenanlage ist Bestandteil der Akkreditierungsurkunde D-K-18366-01-00.

Inhaber der Teil-Akkreditierungsurkunde:

MK-Kalibrierlabor GmbH Madridstraße 2, 97424 Schweinfurt

Das Kalibrierlaboratorium erfüllt die Anforderungen gemäß DIN EN ISO/IEC 17025:2018, um die in dieser Anlage aufgeführten Konformitätsbewertungstätigkeiten durchzuführen. Das Kalibrierlaboratorium erfüllt gegebenenfalls zusätzliche gesetzliche und normative Anforderungen, einschließlich solcher in relevanten sektoralen Programmen, sofern diese nachfolgend ausdrücklich bestätigt werden.

Die Anforderungen an das Managementsystem in der DIN EN ISO/IEC 17025 sind in einer für Kalibrierlaboratorien relevanten Sprache verfasst und stehen insgesamt in Übereinstimmung mit den Prinzipien der DIN EN ISO 9001.

Diese Urkundenanlage gilt nur zusammen mit der schriftlich erteilten Urkunde und gibt den Stand zum Zeitpunkt des Ausstellungsdatums wieder. Der jeweils aktuelle Stand der gültigen und überwachten Akkreditierung ist der Datenbank akkreditierter Stellen der Deutschen Akkreditierungsstelle zu entnehmen (www.dakks.de)

Verwendete Abkürzungen: siehe letzte Seite Seite Seite 1 von 15

Kalibrierungen in den Bereichen:

Dimensionelle Messgrößen

Länge

- Längenmessmittel
- Durchmesser
- Formabweichung
- Gewinde
- Längenmessgeräte ^{a)}

Koordinatenmesstechnik

- Anwendung Koordinatenmessgeräte

Elektrische Messgrößen

Gleichstrom und Niederfrequenz

- Gleichspannung a)
- Wechselspannung a)
- Gleichstromstärke ^{a)}
- Wechselstromstärke ^{a)}
- Gleichstromwiderstand ^{a)}

Für die mit * gekennzeichneten Messgrößen/Kalibriergegenstände ist dem Kalibrierlaboratorium, ohne dass es einer vorherigen Information und Zustimmung der DAkkS bedarf, die Anwendung der hier aufgeführten Normen/Kalibrierrichtlinien mit unterschiedlichen Ausgabeständen gestattet.

Das Kalibrierlaboratorium verfügt über eine aktuelle Liste aller Normen/Kalibrierrichtlinien im flexiblen Akkreditierungsbereich.

Gültig ab: 14.07.2023 Ausstellungsdatum: 14.07.2023

Seite 2 von 15

a) auch als Vor-Ort-Kalibrierung

¹ Wenn nicht anders angegeben, entspricht die Einheit einer Variablen der Einheit des Messbereichs.

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Mes		eich /	Messbedingungen / Verfahren	Erweiterte Messunsicherheit ¹	Bemerkungen
Länge						
Messschieber für Außen-,	0 mm	bis	300 mm	VDI/VDE/DGQ 2618	$30 \ \mu m + 30 \cdot 10^{-6} \cdot l$	<i>l</i> = gemessene Länge
Innen- und Tiefenmaße *	> 300 mm	bis	1000 mm	Blatt 9.1:2006	50 μm + 30 · 10 ⁻⁶ · <i>l</i>	
Tiefenmessschieber *	0 mm	bis	300 mm	VDI/VDE/DGQ 2618	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	_
	> 300 mm	bis	1000 mm	Blatt 9.2:2006	50 μm + 30 · 10 ⁻⁶ · <i>l</i>	
Höhenmessschieber *	0 mm	bis	1000 mm	VDI/VDE/DGQ 2618 Blatt 9.3:2006	30 μm + 30 · 10 ⁻⁶ · <i>l</i>	
Bügelmessschrauben *	0 mm	bis	725 mm	VDI/VDE/DGQ 2618	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	725 mm / 1500 mm =
	> 725 mm	bis	1500 mm	Blatt 10.1:2001	5 μm + 10 · 10 ⁻⁶ · <i>l</i>	Endwert des Messbereichs
Bügelmessschrauben mit auswechselbaren Messeinsätzen *	0 mm	bis	725 mm	VDI/VDE/DGQ 2618 Blatt 10.2:2010	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	725 mm = Endwert des Messbereichs
Bügelmessschrauben mit Messschnäbeln für Innenmessungen	3 mm	bis	130 mm	AA_005:2023-01	5 μm + 8 · 10 ⁻⁶ · <i>l</i>	130 mm = Endwert des Messbereichs
Einstellmaße für	25 mm	bis	300 mm	VDI/VDE/DGQ 2618	2 μm + 10 · 10 ⁻⁶ · <i>l</i>	<i>l</i> = gemessene Länge
Bügelmessschrauben *	> 300 mm	bis	1500 mm	Blatt 4.4:2009	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	_
Feinzeigermess- schrauben *	0 mm	bis	200 mm	VDI/VDE/DGQ 2618 Blatt 10.3:2002	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Tiefenmessschrauben *	0 mm	bis	300 mm	VDI/VDE/DGQ 2618 Blatt 10.5:2010	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Innenmessschrauben	25 mm	bis	300 mm	VDI/VDE/DGQ 2618	3 μm + 10 · 10 ⁻⁶ · d	d = gemessener
mit 2-Punkt-Berührung *	> 300 mm	bis	1500 mm	Blatt 10.7:2010	5 μm + 10 · 10 ⁻⁶ · <i>d</i>	Durchmesser
Innenmessschrauben mit 3-Linien-Berührung *	3 mm	bis	130 mm	VDI/VDE/DGQ 2618 Blatt 10.8:2002	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	
Messuhren mit Skalenanzeige *		bis	100 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.1:2021	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	<i>l</i> = gemessene Länge
Feinzeiger *		bis	3 mm	VDI/VDE/DGQ 2618 Blatt 11.2:2002	1,1 μm	
Fühlhebelmessgeräte *		bis	1,6 mm	VDI/VDE/DGQ 2618 Blatt 11.3:2002	1,2 μm	
Messuhren mit Ziffernanzeige *		bis	100 mm	VDI/VDE/DGQ/DKD 2618 Blatt 11.4:2020	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Hebelmessgeräte		bis	100 mm	VDI/VDE/DGQ 2618	10 μm	Messtiefe: bis 50 mm
(Schnelltaster) für Außenmessungen *				Blatt 12.1:2005	15 μm	Messtiefe: > 50 mm bis 100 mm
Hebelmessgeräte	2,5 mm	bis	100 mm	VDI/VDE/DGQ 2618	10 μm	Messtiefe: bis 50 mm
(Schnelltaster) für Innenmessungen *				Blatt 13.1:2005	15 μm	Messtiefe: > 50 mm bis 100 mm

¹ Wenn nicht anders angegeben, entspricht die Einheit einer Variablen der Einheit des Messbereichs.

Gültig ab: 14.07.2023 Ausstellungsdatum: 14.07.2023

Seite 3 von 15

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand		sbere ssspa		Messbedingungen / Verfahren	Erweiterte Messunsicherheit ¹	Bemerkungen
Innenmessgeräte mit 2-Punkt-Berührung *				VDI/VDE/DGQ 2618 Blatt 13.2:2005, Bild 1	0,8 μm	Anwendungsbereich: mit Messspitzen: d = 1,75 mm bis 25 mm
		bis	3 mm	VDI/VDE/DGQ 2618 Blatt 13.2:2005, Bild 2	0,8 μm	Anwendungsbereich: bis $d = 300 \text{ mm}$
		bis	3 mm		1,2 μm	Anwendungsbereich: d > 300 mm bis 600 mm
		bis	3 mm	VDI/VDE/DGQ 2618 Blatt 13.2:2005, Bild 3	0,8 μm	Anwendungsbereich: bis $d = 100 \text{ mm}$
Feinzeigerrachenlehren	0 mm	bis	200 mm	AA_038:2023-01	0,5 μm + 5 · 10 ⁻⁶ · <i>l</i>	<i>l</i> = gemessene Länge
Induktive Messtaster mit Anzeigegerät *		bis	10 mm	VDI/VDE/DGQ 2618 Blatt 14.1:2010	0,8 μm	
Elektronische						
Taster mit Anzeigegerät		bis	100 mm	AA_048:2021-04	0,67 μm + 7,8 · 10 ⁻⁶ · <i>l</i>	
ohne Anzeigegerät		bis	100 mm	AA_054:2021-12	0,6 μm + 7 · 10 ⁻⁶ · <i>l</i>	mit digitaler Signalübertragung
Flachlehren	0,05 mm	bis	50 mm	AA_052:2020-03	0,5 μm + 0,5 · 10 ⁻⁶ · <i>l</i>	
Fühlerlehren	0,01 mm	bis	5 mm	AA_025:2023-01	1,0 μm	
Einbaumessschrauben *	0 mm	bis	100 mm	VDI/VDE/DGQ 2618 Blatt 10.4:2008	3 μm + 10 · 10 ⁻⁶ · <i>l</i>	
Zylindrische Normale Einstell-, Lehrringe * Durchmesser	3 mm	bis	250 mm	VDI/VDE/DGQ 2618 Blatt 4.1:2006, Option 3 und 4	0,8 μm + 2 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser
Einstell-, Lehrdorne Durchmesser	1 mm	bis	250 mm	VDI/VDE/DGQ 2618 Blatt 4.1:2006, Option 3 und 4	0,8 μm + 2 · 10 ⁻⁶ · <i>d</i>	
Innenzylinder, Dorne und Außenzylinder * Rundheitsabweichung		bis	30 μm	VDI/VDE/DGQ 2618 Blatt 4.1:2006, Option 1 und 2	0,3 μm + 1 · 10 ⁻² · <i>RON</i> t	RONt = Rundheitsab- weichung Durchmesser: 3 mm bis 250 mm
Geradheitsabweichung der Mantellinie		bis	30 μm		0,5 μm	Axiale Länge: bis 30 mm
Parallelitätsabweichung der Mantellinie		bis	30 μm	VDI/VDE/DGQ 2618 Blatt 4.1:2006, Option 1	0,5 μm	Axiale Länge: bis 30 mm
Prüfstifte, Gewindeprüfstifte * Durchmesser	0,1 mm	bis	20 mm	VDI/VDE/DGQ 2618 Blatt 4.2:2007		
Kegelnormale und Kegellehren *	6 mm	bis	200 mm	VDI/VDE/DGQ 2618 Blatt 4.12:2007,		
Durchmesser in den Bezugsebenen				Option 2	1,7 μm + 2 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser
Kegelwinkel					(0,2 · m / <i>l</i>)''	l = axiale gemessene Länge in m

¹ Wenn nicht anders angegeben, entspricht die Einheit einer Variablen der Einheit des Messbereichs.

Gültig ab: 14.07.2023 Ausstellungsdatum: 14.07.2023

Seite 4 von 15

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbere Messspa		Messbedingungen / Verfahren	Erweiterte Messunsicherheit ¹	Bemerkungen
Gewindelehren * (ein- und mehrgängige zylindrische und kegelige Außen- gewinde mit gerad- linigen Flanken und symmetrischem Profil					
Außengewinde Einfacher Flankendurchmesser	Nenndurch 1 mm bis Nennstei 0,2 mm bis	200 mm	VDI/VDE/DGQ 2618 Blatt 4.8:2006, Option 1 Dreidrahtmethode senkrecht zur Gewindeachse	3 μm + 10 · 10 ⁻⁶ · <i>d</i>	d = gemessener Flankendurchmesser
Außengewinde	Nenndurch	messer	VDI/VDE/DGQ 2618		
Flankendurchmesser	1 mm bis	200 mm	Blatt 4.8:2006, Option 1 bis Option 5	3 μm	
Außendurchmesser			Scanningverfahren	2 μm	
Kerndurchmesser bzw. Einstichdurchmesser			, and the second	5 μm	
Steigung bzw. Teilung	0,5 mm bis	8 mm		1,5 μm	
Gewindeprofilwinkel α		≥ 27°		$(3 + 1 \text{ mm } / l_F)'$, jedoch nicht kleiner als 6'	$l_{ m F}$ = Flankenlänge
Innengewinde	Nenndurch	messer	VDI/VDE/DGQ 2618		
Flankendurchmesser	3 mm bis	200 mm	Blatt 4.9:2006, Option 1 bis Option 5	3 μm	
Außendurchmesser bzw. Einstichdurchmesser			Scanningverfahren	5 μm	
Kerndurchmesser				2 μm	
Steigung bzw. Teilung	0,5 mm bis	8 mm		1,5 μm	
Gewindeprofilwinkel $lpha$		≥ 27°		$(3 + 1 \text{ mm } / l_F)'$, jedoch nicht kleiner als 6'	
Kugel Durchmesser	0,2 mm bis	100 mm	AA_039:2022-10 Scanningverfahren	0,4 μm + 5 · 10 ⁻⁶ · <i>d</i>	d = gemessener Durchmesser
Vertikale Längenmessgeräte *	0 mm bis	610 mm	VDI/VDE/DGQ 2618 Blatt 16.1:2009	1,7 μm + 3 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Geradheits- und Rechtwinkligkeits- abweichung	bis	30 μm	Bis 500 mm Führungslänge	1,9 μm + 3 · 10 ⁻⁶ · l_z	l _z =Führungslänge

Gültig ab: 14.07.2023 Ausstellungsdatum: 14.07.2023

Seite 5 von 15

¹ Wenn nicht anders angegeben, entspricht die Einheit einer Variablen der Einheit des Messbereichs.

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne	Messbedingungen / Verfahren	Erweiterte Messunsicherheit ¹	Bemerkungen
Koordinatenmesstechnik				
Koordinatenmesstechnik Prismatische, kegel- und kugelförmige Werkstücke	Koordinatenmessgerät mit einem kalibrierten Mess- volumen von: X = 900 mm Y = 1150 mm Z = 800 mm	AA-044: 2021-08 Taktile Messung in Form von Einzelpunkt- antastungen mit einem Koordinatenmessgerät und Bestimmung von Regelgeometrien, die durch geometrische Parameter bestimmt sind (Einzelpunkte, Geraden, Ebenen, Kreise, Kugeln, Zylinder, Tori), mit der Auswerte-software des KMGs. Einzelpunktantastungen als "selbstzentrierende Antastungen" werden im Rahmen der Akkreditierung nicht verwendet. Für die Sicherstellung der Rückführbarkeit wird die Kalibrierung eines vergleichbaren Normals durchgeführt. Darüber hinaus sind folgende Einschränkungen zu beachten: Messpunkte müssen gleichmäßig über Formelemente verteilt werden können; Abdeckung von mindestens 50 % der Oberflache von Formelementen; Auswertung mittlerer	Die Messunsicherheit wird ermittelt durch eine Messunsicherheitsbilanz auf Basis der Richtlinie VDI/VDE 2617 Blatt 11:2011. Sie ist aufgabenspezifisch und wird für eine Überdeckungswahrscheinlichkeit von 95 % angegeben (Erweiterungsfaktor k = 2) Beispielhafte Messunsicherheit für eine Messaufgabe: Parallelendmaß mit Nennmaß von 1000 mm, verwendet wurde ein seitlich auskragender Taster mit einer Länge von 150 mm, ermittelt wurde die erweitere Messunsicherheit des Prüfmerkmals "Abstand": U = 3,9 μm	Die ermittelte Messunsicherheit kann sich von der beispielhaft angegebenen Unsicherheit deutlich unterscheiden.
		Formelemente		

¹ Wenn nicht anders angegeben, entspricht die Einheit einer Variablen der Einheit des Messbereichs.

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

N4000000000 /	1			a Messmoglichkei	i i	Domorkungen
Messgröße / Kalibriergegenstand		bereich sspann	•	Messbedingungen / Verfahren	Erweiterte Messunsicherheit ¹	Bemerkungen
Gleichstrom und	141033	ээрагиг		Verrunien	Wiessansienerneit	
Niederfrequenz						
Gleichspannung	10 mV	bis	100 mV		15 · 10 ⁻⁶ · <i>U</i> + 0,5 μV	U = Messwert
Quellen		bis	1 V		$10 \cdot 10^{-6} \cdot U + 0.5 \mu\text{V}$	mit Agilent 3458A
•		bis	10 V		$11 \cdot 10^{-6} \cdot U$	Time riginetic 3 130/1
		bis	100 V		$17 \cdot 10^{-6} \cdot U$	
		bis	1 kV		28 \cdot 10 ⁻⁶ \cdot U	
Gleichspannung		bis	220 mV		15 · 10 ⁻⁶ · <i>U</i> + 1,5 μV	U = Messwert
Messgeräte	> 220 mV	bis	2,2 V		$15 \cdot 10^{-6} \cdot U + 0.5 \mu\text{V}$	mit Fluke 5700A
· ·	> 2,2 V	bis	11 V		12 \cdot 10 ⁻⁶ \cdot U	
	> 11 V	bis	22 V		11 \cdot 10 ⁻⁶ \cdot U	
	> 22 V	bis	1100 V		15 \cdot 10 ⁻⁶ \cdot U	
	33 mV	bis	330 mV		70 · 10 ⁻⁶ · <i>U</i> + 5 μV	U = Messwert
	> 330 mV	bis	3,3 V		60 · 10 ⁻⁶ · <i>U</i> + 7 μV	mit Fluke 5502A
	,	bis	33 V		60 · 10 ⁻⁶ · <i>U</i> + 60 μV	
		bis	330 V		$65\cdot 10^{-6}\cdot U$ + 0,6 mV	
	> 330 V	bis	1020 V		$65\cdot 10^{ ext{-}6}\cdot U$ + 1,8 mV	
Gleichstromstärke	10 μΑ	bis	100 μΑ		10 · 10 ⁻⁶ · <i>I</i> + 15 nA	I = Messwert
Quellen	> 100 µA	bis	1 mA		25 · 10 ⁻⁶ · <i>I</i> + 15 nA	mit Agilent 3458A
	> 1 mA	bis	10 mA		25 · 10 ⁻⁶ · <i>I</i> + 0,15 μA	
	> 10 mA	bis	100 mA		40 · 10 ⁻⁶ · <i>I</i> + 1,3 μA	
	> 100 mA	bis	1 A		$0.13 \cdot 10^{-3} \cdot I + 17 \mu\text{A}$	
Gleichstromstärke	22 μΑ	bis	220 μΑ		0,8 · 10 ⁻³ · <i>I</i>	I = Messwert
Messgeräte		bis	220 mA		$0.2 \cdot 10^{-3} \cdot I$	mit Fluke 5700A
		bis	2,2 A		$0.5 \cdot 10^{-3} \cdot I$	
	> 2,2 A	bis	20 A		0,3 · 10 ⁻³ · <i>I</i> + 1,5 mA	mit Fluke 5220A
	33 μΑ	bis	330 μΑ		0,16 · 10 ⁻³ · <i>I</i> + 30 nA	I = Messwert
	-	bis	3,3 mA		$0,10 \cdot 10^{-3} \cdot I + 70 \text{ nA}$	mit Fluke 5502A
		bis	33 mA		$0.12 \cdot 10^{-3} \cdot I + 0.3 \mu\text{A}$	
		bis	330 mA		$0.12 \cdot 10^{-3} \cdot I + 3 \mu\text{A}$	
	> 330 mA	bis	3 A		$0.45 \cdot 10^{-3} \cdot I + 50 \mu\text{A}$	
	> 3 A	bis	11 A		$0.70 \cdot 10^{-3} \cdot I + 0.59 \text{ mA}$	
	> 11 A	bis	20,5 A		1,2 · 10 ⁻³ · <i>I</i> + 0,87 mA	
Gleichstromwiderstand	1 Ω	bis	10 Ω		20 · 10 ⁻⁶ · R + 65 μΩ	R = Messwert
Widerstände / Quellen		bis	100 Ω		$15 \cdot 10^{-6} \cdot R + 0.65 \text{ m}\Omega$	mit Agilent 3458A
,		bis	1 kΩ		$12 \cdot 10^{-6} \cdot R + 1,5 \text{ m}\Omega$	
		bis	10 kΩ		$12 \cdot 10^{-6} \cdot R + 15 \text{ m}\Omega$	
		bis	100 kΩ		$12 \cdot 10^{-6} \cdot R + 0,15 \Omega$	
	> 100 kΩ	bis	$1\mathrm{M}\Omega$		$18 \cdot 10^{-6} \cdot R + 3 \Omega$	
		bis	$10~\text{M}\Omega$		$60 \cdot 10^{-6} \cdot R + 0,12 \text{ k}\Omega$	
		bis	100 MΩ		$0.7 \cdot 10^{-3} \cdot R$	
	> 100 MΩ	bis	1 GΩ		6 · 10⁻³ · <i>R</i>	
Gleichstromwiderstand	1 Ω, 1,9 Ω			Festwerte	$0,15 \cdot 10^{-3} \cdot R$	R = Messwert
Messgeräte	10 Ω, 19 Ω, 3	100 Ω			50 · 10⁻⁶ · <i>R</i>	mit Fluke 5700A
	190 Ω, 1 kΩ,	, 1,9 kΩ)		$50 \cdot 10^{-6} \cdot R$	
	10 kΩ, 19 kΩ				50 · 10⁻⁶ · <i>R</i>	
	190 kΩ, 1 M		ΜΩ		50 · 10⁻⁶ · <i>R</i>	
	10 MΩ, 19 N	VIΩ			$0.5 \cdot 10^{-3} \cdot R$	
-	100 ΜΩ				$1\cdot 10^{-3}\cdot R$	

¹ Wenn nicht anders angegeben, entspricht die Einheit einer Variablen der Einheit des Messbereichs.

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Mess	sberei ssspar	ich /	Messbe	•	ungen /	Erweiterte Messunsicherheit ¹	Bemerkungen
Gleichstromwiderstand	1 Ω	bis	11 Ω	Festwerte			$0.12 \cdot 10^{-3} \cdot R + 1.7 \text{ m}\Omega$	R = Messwert
Messgeräte	11 Ω	bis	33 Ω				$0.14 \cdot 10^{-3} \cdot R + 2.0 \text{ m}\Omega$	mit Fluke 5502A
	33 Ω	bis	110 Ω				$0.11 \cdot 10^{-3} \cdot R + 1.8 \text{ m}\Omega$	
	110 Ω	bis	330 Ω				$0.11 \cdot 10^{-3} \cdot R + 2.4 \text{ m}\Omega$	
	330 Ω	bis	1,1 kΩ				$0.12 \cdot 10^{-3} \cdot R$	
	1,1 kΩ	bis	33 kΩ				$0.11 \cdot 10^{-3} \cdot R$	
	33 kΩ	bis	110 kΩ				$0.13 \cdot 10^{-3} \cdot R$	
	110 kΩ	bis	330 kΩ				$0.14 \cdot 10^{-3} \cdot R$	
	330 kΩ	bis	1,1 ΜΩ				$0.18 \cdot 10^{-3} \cdot R$	
	1,1 ΜΩ	bis	3,3 ΜΩ				$0,19 \cdot 10^{-3} \cdot R$	
	3,3 ΜΩ	bis	11 MΩ				$0.7 \cdot 10^{-3} \cdot R$	
	11 MΩ	bis	33 MΩ				$1,3\cdot 10^{-3}\cdot R$	
	33 MΩ	bis	110 MΩ				$5.8 \cdot 10^{-3} \cdot R$	
	110 MΩ	bis	330 MΩ				$6.9 \cdot 10^{-3} \cdot R$	
	330 MΩ	bis	1,1 GΩ				$18 \cdot 10^{-3} \cdot R$	
Wechselspannung	10 mV	bis	100 mV	10 Hz	bis	40 Hz	$85 \cdot 10^{-6} \cdot U + 7,5 \mu V$	U = Messwert
Quellen				> 40 Hz	bis	1 kHz	$80 \cdot 10^{-6} \cdot U + 6 \mu\text{V}$	mit Agilent 3458A
				> 1 kHz	bis	20 kHz	$0.15 \cdot 10^{-3} \cdot U + 6 \mu\text{V}$	
				> 20 kHz	bis	50 kHz	$0.30 \cdot 10^{-3} \cdot U + 10 \mu\text{V}$	
				> 50 kHz	bis	100 kHz	$0.77 \cdot 10^{-3} \cdot U + 24 \mu\text{V}$	
	> 100 mV	bis	1 V	10 Hz	bis	40 Hz	96 · 10 ⁻⁶ · <i>U</i> + 47 μV	
				> 40 Hz	bis	1 kHz	$95 \cdot 10^{-6} \cdot U + 25 \mu\text{V}$	
				> 1 kHz	bis	20 kHz	$0.17 \cdot 10^{-3} \cdot U + 25 \mu\text{V}$	
				> 20 kHz	bis	50 kHz	$0.35 \cdot 10^{-3} \cdot U + 29 \mu\text{V}$	
				> 50 kHz	bis	100 kHz	$0.92 \cdot 10^{-3} \cdot U + 39 \mu\text{V}$	
	> 1 V	bis	10 V	10 Hz	bis	40 Hz	96 · 10⁻⁶ · <i>U</i> + 0,47 mV	
				> 40 Hz	bis	1 kHz	$94 \cdot 10^{-6} \cdot U + 0,25 \text{ mV}$	
				> 1 kHz	bis	20 kHz	$0,17 \cdot 10^{-3} \cdot U + 0,25 \text{ mV}$	
				> 20 kHz	bis	50 kHz	$0.36 \cdot 10^{-3} \cdot U + 0.27 \text{ mV}$	
				> 50 kHz	bis	100 kHz	$0,93 \cdot 10^{-3} \cdot U + 0,28 \text{ mV}$	
	> 10 V	bis	100 V	10 Hz	bis	40 Hz	$0,25 \cdot 10^{-3} \cdot U + 4,7 \text{ mV}$	
				> 40 Hz	bis	1 kHz	$0,24 \cdot 10^{-3} \cdot U$ + 2,5 mV	
				> 1 kHz	bis	20 kHz	$0,24 \cdot 10^{-3} \cdot U + 2,5 \text{ mV}$	
				> 20 kHz	bis	50 kHz	$0,41 \cdot 10^{-3} \cdot U + 2,9 \text{ mV}$	
				> 50 kHz	bis	100 kHz	1,4 \cdot 10 ⁻³ \cdot U + 3,5 mV	
	> 100 V	bis	700 V	40 Hz	bis	1 kHz	$0,49 \cdot 10^{-3} \cdot U + 24 \text{ mV}$	
				> 1 kHz	bis	20 kHz	0,72 \cdot 10 ⁻³ \cdot U + 24 mV	
				> 20 kHz	bis	50 kHz	1,4 \cdot 10 ⁻³ \cdot U + 25 mV	

Gültig ab: 14.07.2023 Ausstellungsdatum: 14.07.2023

Seite 8 von 15

¹ Wenn nicht anders angegeben, entspricht die Einheit einer Variablen der Einheit des Messbereichs.

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Mess	sberei ssspan	ch /	Messbe	•	ungen /	Erweiterte Messunsicherheit ¹	Bemerkungen
Wechselspannung Messgeräte	100 mV	bis	220 mV	40 Hz > 20 kHz > 50 kHz	bis bis bis	20 kHz 50 kHz 100 kHz	$0.5 \cdot 10^{-3} \cdot U$ $0.7 \cdot 10^{-3} \cdot U$ $1.5 \cdot 10^{-3} \cdot U$	U = Messwert mit Fluke 5700A
	> 220 mV	bis	2,2 V	40 Hz > 20 kHz > 50 kHz	bis bis bis	20 kHz 50 kHz 100 kHz	$\begin{array}{c} \text{0,2} \cdot \text{10}^{\text{-3}} \cdot U \\ \text{0,3} \cdot \text{10}^{\text{-3}} \cdot U \\ \text{0,8} \cdot \text{10}^{\text{-3}} \cdot U \end{array}$	
	> 2,2 V	bis	22 V	40 Hz > 20 kHz > 50 kHz	bis bis bis	20 kHz 50 kHz 100 kHz	$0.2 \cdot 10^{-3} \cdot U$ $0.3 \cdot 10^{-3} \cdot U$ $0.6 \cdot 10^{-3} \cdot U$	
	> 22 V	bis	220 V	40 Hz > 20 kHz > 50 kHz	bis bis bis	20 kHz 50 kHz 100 kHz	$0,3 \cdot 10^{-3} \cdot U$ $0,6 \cdot 10^{-3} \cdot U$ $1,5 \cdot 10^{-3} \cdot U$	
	> 220 V	bis	1100 V	50 Hz	bis	1 kHz	0,5 \cdot 10 ⁻³ \cdot U	
	33 mV	bis	330 mV	45 Hz > 10 kHz > 20 kHz	bis bis bis	10 kHz 20 kHz 50 kHz	0,35 · 10^{-3} · U + 25 μV 0,8 · 10^{-3} · U + 29 μV 1,1 · 10^{-3} · U + 70 μV	U = Messwert mit Fluke 5502A
	> 330 mV	bis	3,3 V	45 Hz > 10 kHz > 20 kHz	bis bis bis	10 kHz 20 kHz 50 kHz	$0,35 \cdot 10^{-3} \cdot U + 70 \mu\text{V}$ $0,81 \cdot 10^{-3} \cdot U + 75 \mu\text{V}$ $1,2 \cdot 10^{-3} \cdot U + 85 \mu\text{V}$	
	> 3,3 V	bis	33 V	45 Hz > 10 kHz > 20 kHz	bis bis bis	10 kHz 20 kHz 50 kHz	$\begin{array}{c} \text{0,35} \cdot 10^{\text{-3}} \cdot U + \text{0,7 mV} \\ \text{0,81} \cdot 10^{\text{-3}} \cdot U + \text{0,7 mV} \\ \text{1,2} \cdot 10^{\text{-3}} \cdot U + \text{0,7 mV} \end{array}$	
	> 33 V	bis	330 V	45 Hz 1 kHz > 10 kHz > 20 kHz	bis bis bis bis	1 kHz 10 kHz 20 kHz 50 kHz	$\begin{array}{c} 0.58 \cdot 10^{\text{-3}} \cdot U + 3.5 \text{ mV} \\ 0.92 \cdot 10^{\text{-3}} \cdot U + 11 \text{ mV} \\ 1.1 \cdot 10^{\text{-3}} \cdot U + 11 \text{ mV} \\ 1.4 \cdot 10^{\text{-3}} \cdot U + 12 \text{ mV} \end{array}$	
	> 330 V	bis	1020 V	45 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	$\begin{array}{c} \textbf{0,65} \cdot \textbf{10}^{-3} \cdot U \\ \textbf{1} \cdot \textbf{10}^{-3} \cdot U \\ \textbf{1,1} \cdot \textbf{10}^{-3} \cdot U \end{array}$	
Wechselstromstärke Quellen	1 mA	bis	10 mA	20 Hz > 45 Hz > 100 Hz	bis bis bis	45 Hz 100 Hz 5 kHz	$2 \cdot 10^{-3} \cdot I + 2,5 \mu\text{A} \ 0,7 \cdot 10^{-3} \cdot I + 2,5 \mu\text{A} \ 0,4 \cdot 10^{-3} \cdot I + 2,5 \mu\text{A}$	I = Messwert mit Agilent 3458A
	> 10 mA	bis	100 mA	20 Hz > 45 Hz > 100 Hz	bis bis bis	45 Hz 100 Hz 5 kHz	1,8 · 10 ⁻³ · <i>I</i> + 25 μA 0,7 · 10 ⁻³ · <i>I</i> + 25 μA 0,38 · 10 ⁻³ · <i>I</i> + 25 μA	
	> 100 mA	bis	1 A	20 Hz > 45 Hz > 100 Hz	bis bis bis	45 Hz 100 Hz 5 kHz	$2 \cdot 10^{-3} \cdot I + 0,25 \text{ mA}$ $0,95 \cdot 10^{-3} \cdot I + 0,25 \text{ mA}$ $1,2 \cdot 10^{-3} \cdot I + 0,25 \text{ mA}$	

¹ Wenn nicht anders angegeben, entspricht die Einheit einer Variablen der Einheit des Messbereichs.

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Mess	sberei ssspan	ch /	Messbe	_	ngen /	Erweiterte Messunsicherheit ¹	Bemerkungen
Wechselstromstärke Messgeräte	100 μΑ	bis	220 μΑ	40 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	0,5 · 10 ⁻³ · <i>I</i> 1,5 · 10 ⁻³ · <i>I</i> 3,5 · 10 ⁻³ · <i>I</i>	I = Messwert mit Fluke 5700A
	> 220 µA	bis	2,2 mA	40 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	0,65 · 10 ⁻³ · <i>I</i> 4 · 10 ⁻³ · <i>I</i> 8 · 10 ⁻³ · <i>I</i>	
	> 2,2 mA	bis	220 mA	40 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	0,5 · 10 ⁻³ · <i>I</i> 4 · 10 ⁻³ · <i>I</i> 8 · 10 ⁻³ · <i>I</i>	
	> 220 mA	bis	2,2 A	40 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	1,2 · 10 ⁻³ · <i>I</i> 3 · 10 ⁻³ · <i>I</i> 15 · 10 ⁻³ · <i>I</i>	
	> 2,2 A	bis	20 A	40 Hz > 1 kHz	bis bis	1 kHz 5 kHz	$0.8 \cdot 10^{-3} \cdot I + 1.5 \text{ mA}$ $4 \cdot 10^{-3} \cdot I + 7 \text{ mA}$	mit Fluke 5220A
	100 μΑ	bis	330 μΑ	45 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	1,5 · 10 ⁻³ · <i>I</i> + 0,12 μA 3,5 · 10 ⁻³ · <i>I</i> + 0,18 μA 9,3 · 10 ⁻³ · <i>I</i> + 0,24 μA	I= Messwert mit Fluke 5502A
	> 330 µA	bis	3,3 mA	45 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	1,2 · 10 ⁻³ · <i>I</i> + 0,17 μA 2,3 · 10 ⁻³ · <i>I</i> + 0,23 μA 5,8 · 10 ⁻³ · <i>I</i> + 0,35 μA	
	> 3,3 mA	bis	33 mA	45 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	0,47 · 10 ⁻³ · <i>I</i> + 2,4 μA 0,92 · 10 ⁻³ · <i>I</i> + 2,5 μA 2,3 · 10 ⁻³ · <i>I</i> + 3,5 μA	
	> 33 mA	bis	330 mA	45 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	0,47 \cdot 10 ⁻³ \cdot I + 24 μ A 1,2 \cdot 10 ⁻³ \cdot I + 60 μ A 2,3 \cdot 10 ⁻³ \cdot I + 0,12 mA	
	> 330 mA	bis	1,1 A	45 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	0,58 \cdot 10 ⁻³ \cdot I + 0,12 mA 6,9 \cdot 10 ⁻³ \cdot I + 1,2 mA 29 \cdot 10 ⁻³ \cdot I + 5,8 mA	
	> 1,1 A	bis	3 A	45 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	0,7 · 10 ⁻³ · <i>I</i> + 0,12 μA 7 · 10 ⁻³ · <i>I</i> + 1,2 mA 29 · 10 ⁻³ · <i>I</i> + 5,8 mA	
	> 3 A	bis	11 A	45 Hz > 100 Hz > 1 kHz	bis bis bis	100 Hz 1 kHz 5 kHz	$0.72 \cdot 10^{-3} \cdot I + 2.3 \text{ mA}$ $1.2 \cdot 10^{-3} \cdot I + 2.3 \text{ mA}$ $35 \cdot 10^{-3} \cdot I$	
	> 11 A	bis	20,5 A	45 Hz > 100 Hz > 1 kHz	bis bis bis	100 Hz 1 kHz 5 kHz	1,4 \cdot 10 ⁻³ \cdot I + 5,8 mA 1,8 \cdot 10 ⁻³ \cdot I + 5,8 mA 35 \cdot 10 ⁻³ \cdot I	

Gültig ab: 14.07.2023 Ausstellungsdatum: 14.07.2023

Seite 10 von 15

¹ Wenn nicht anders angegeben, entspricht die Einheit einer Variablen der Einheit des Messbereichs.

Vor-Ort-Kalibrierung

Kalibrier- und Messmöglichkeiten (CMC)

_ ,	İ			i wessmogiichke	1	l <u>-</u> .
Messgröße / Kalibriergegenstand		sbere ssspar		Messbedingungen / Verfahren	Erweiterte Messunsicherheit ¹	Bemerkungen
Gleichstrom und	IVIC	333Pai	iiic	verianien	Wiessansienerneit	
Niederfrequenz						
Gleichspannung	10 m)/	hic	100 m)/		15 10.6 II . 0 5V	II - Massurant
Quellen	10 mV	bis	100 mV		$15 \cdot 10^{-6} \cdot U + 0.5 \mu\text{V}$	U = Messwert
Quellell	> 100 mV	bis	1 V		$10 \cdot 10^{-6} \cdot U + 0,5 \mu\text{V}$ $11 \cdot 10^{-6} \cdot U$	mit Agilent 3458A
	> 1 V > 10 V	bis	10 V		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
		bis	100 V			
Claicheannan	> 100 V	bis	1 kV		28 · 10 ⁻⁶ · <i>U</i>	II Massusset
Gleichspannung	22 mV	bis	220 mV		$15 \cdot 10^{-6} \cdot U + 1,5 \mu\text{V}$	U = Messwert
Messgeräte	> 220 mV	bis	2,2 V		15 · 10 ⁻⁶ · U + 0,5 μV 12 · 10 ⁻⁶ · U	mit Fluke 5700A
	> 2,2 V	bis	11 V			
	> 11 V	bis	22 V		$egin{array}{cccccccccccccccccccccccccccccccccccc$	
	> 22 V 33 mV	bis bis	1100 V			77
	> 330 mV		330 mV		$70 \cdot 10^{-6} \cdot U + 5 \mu\text{V}$	U = Messwert
		bis	3,3 V		$60 \cdot 10^{-6} \cdot U + 7 \mu\text{V}$	mit Fluke 5502A
	> 3,3 V > 33 V	bis bis	33 V		$60 \cdot 10^{-6} \cdot U + 60 \mu\text{V}$	
			330 V		$65 \cdot 10^{-6} \cdot U + 0.6 \text{ mV}$	
	> 330 V	bis	1020 V		$65 \cdot 10^{-6} \cdot U + 1,8 \text{ mV}$	
Gleichstromstärke	10 μΑ	bis	100 μΑ		10 · 10⁻⁶ · <i>I</i> + 15 nA	I = Messwert
Quellen	> 100 µA	bis	1 mA		25 · 10 ⁻⁶ · <i>I</i> + 15 nA	mit Agilent 3458A
	> 1 mA	bis	10 mA		25 · 10 ⁻⁶ · <i>I</i> + 0,15 μA	
	> 10 mA	bis	100 mA		40 · 10 ⁻⁶ · <i>I</i> + 1,3 μA	
	> 100 mA	bis	1 A		$0.13 \cdot 10^{-3} \cdot I + 17 \mu\text{A}$	
Gleichstromstärke	22 μΑ	bis	220 μΑ		0,8 · 10 ⁻³ · <i>I</i>	I = Messwert
Messgeräte	> 220 µA	bis	220 mA		0,2 · 10⁻³ · <i>I</i>	mit Fluke 5700A
	> 220 mA	bis	2,2 A		$0.5\cdot 10^{-3}\cdot I$	
	> 2,2 A	bis	20 A		0,3 · 10 ⁻³ · <i>I</i> + 1,5 mA	mit Fluke 5220A
	33 μΑ	bis	330 μΑ		0,16 · 10 ⁻³ · <i>I</i> + 30 nA	I = Messwert
	> 330 μA	bis	3,3 mA		$0.12 \cdot 10^{-3} \cdot I + 70 \text{ nA}$	mit Fluke 5502A
	> 3,3 mA	bis	33 mA		$0.12 \cdot 10^{-3} \cdot I + 0.3 \mu\text{A}$	
	> 33 mA	bis	330 mA		$0.12 \cdot 10^{-3} \cdot I + 3 \mu\text{A}$	
	> 330 mA	bis	3 A		$0.45 \cdot 10^{-3} \cdot I + 50 \mu\text{A}$	
	> 3 A	bis	11 A		$0.70 \cdot 10^{-3} \cdot I + 0.59 \text{ mA}$	
	> 11 A	bis	20,5 A		1,2 · 10 ⁻³ · <i>I</i> + 0,87 mA	
Gleichstromwiderstand	1 Ω	bis	10 Ω		20 · 10 ⁻⁶ · R + 65 μΩ	R = Messwert
Widerstände / Quellen	> 10 Ω	bis	100 Ω		$15 \cdot 10^{-6} \cdot R + 0.65 \text{ m}\Omega$	mit Agilent 3458A
	> 100 Ω	bis	1 kΩ		$12 \cdot 10^{-6} \cdot R + 1,5 \text{ m}\Omega$	
	> 1 kΩ	bis	10 kΩ		$12 \cdot 10^{-6} \cdot R + 15 \text{ m}\Omega$	
	> 10 kΩ	bis	100 kΩ		$12 \cdot 10^{-6} \cdot R + 0.15 \Omega$	
	> 100 kΩ	bis	1 MΩ		$18 \cdot 10^{-6} \cdot R + 3 \Omega$	
	> 1 MΩ	bis	10 MΩ		$60 \cdot 10^{-6} \cdot R + 0.12 \text{ k}\Omega$	
	> 10 MΩ	bis	100 MΩ		$0.7 \cdot 10^{-3} \cdot R$	
	> 100 MΩ	bis	1 GΩ		$6 \cdot 10^{-3} \cdot R$	
Gleichstromwiderstand	1 Ω, 1,9 Ω			Festwerte	0,15 · 10 ⁻³ · R	R = Messwert
Messgeräte	10 Ω, 19 Ω,	100 0)	I COLVVCI CC	$50 \cdot 10^{-6} \cdot R$	mit Fluke 5700A
	190 Ω, 1 kΩ				50 · 10 · R	
	10 kΩ, 19 k				$50 \cdot 10^{-6} \cdot R$	
	190 kΩ, 1 N				50 · 10 · R	
	10 MΩ, 19	, ,			$0.5 \cdot 10^{-3} \cdot R$	
	100 MΩ				$1 \cdot 10^{-3} \cdot R$	
	100 14175				1 10 K	

¹ Wenn nicht anders angegeben, entspricht die Einheit einer Variablen der Einheit des Messbereichs.

Vor-Ort-Kalibrierung

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße /	Mes	sbere	ich /	Messbedingungen /			Erweiterte	Bemerkungen
Kalibriergegenstand	Mes	ssspai	nne	Ve	rfahı	en	Messunsicherheit ¹	
Gleichstromwiderstand	1Ω	bis	11 Ω	Festwert	e		$0.12 \cdot 10^{-3} \cdot R + 1.7 \text{ m}\Omega$	R = Messwert
Messgeräte	11 Ω	bis	33 Ω				$0.14 \cdot 10^{-3} \cdot R + 2.0 \text{ m}\Omega$	mit Fluke 5502A
_	33 Ω	bis	110 Ω				$0.11 \cdot 10^{-3} \cdot R + 1.8 \text{ m}\Omega$	
	110 Ω	bis	330 Ω				$0,11 \cdot 10^{-3} \cdot R + 2,4 \text{ m}\Omega$	
	330 Ω	bis	1,1 kΩ				$0,12 \cdot 10^{-3} \cdot R$	
	1,1 kΩ	bis	33 kΩ				$0,11 \cdot 10^{-3} \cdot R$	
	33 kΩ	bis	110 kΩ				$0,13 \cdot 10^{-3} \cdot R$	
	110 kΩ	bis	330 kΩ				$0.14 \cdot 10^{-3} \cdot R$	
	330 kΩ	bis	1,1 ΜΩ				$0.18 \cdot 10^{-3} \cdot R$	
	1,1 ΜΩ	bis	3,3 ΜΩ				$0,19 \cdot 10^{-3} \cdot R$	
	3,3 ΜΩ	bis	11 MΩ				$0.7 \cdot 10^{-3} \cdot R$	
	11 ΜΩ	bis	33 MΩ				$1,3 \cdot 10^{-3} \cdot R$	
	33 MΩ	bis	110 MΩ				5,8 · 10⁻³ · <i>R</i>	
	110 ΜΩ	bis	330 MΩ				6,9 · 10⁻³ · <i>R</i>	
	330 MΩ	bis	1,1 GΩ				$18 \cdot 10^{-3} \cdot R$	
Wechselspannung	10 mV	bis	100 mV	10 Hz	bis	40 Hz	85 · 10 ⁻⁶ · <i>U</i> + 7,5 μV	U = Messwert
Quellen				> 40 Hz	bis	1 kHz	$80 \cdot 10^{-6} \cdot U + 6 \mu\text{V}$	mit Agilent 3458A
				> 1 kHz	bis	20 kHz	$0,15 \cdot 10^{-3} \cdot U + 6 \mu\text{V}$	
				> 20 kHz	bis	50 kHz	$0,30\cdot 10^{-3}\cdot U$ + 10 μV	
				> 50 kHz	bis	100 kHz	$0,77 \cdot 10^{-3} \cdot U + 24 \mu\text{V}$	
	> 100 mV	bis	1 V	10 Hz	bis	40 Hz	96 · 10 ⁻⁶ · <i>U</i> + 47 μV	
				> 40 Hz	bis	1 kHz	$95 \cdot 10^{-6} \cdot U$ + 25 μV	
				> 1 kHz	bis	20 kHz	0,17 · 10 ⁻³ · U + 25 μV	
				> 20 kHz	bis	50 kHz	$0,35 \cdot 10^{-3} \cdot U$ + 29 μV	
				> 50 kHz	bis	100 kHz	0,92 \cdot 10 ⁻³ \cdot U + 39 μV	
	> 1 V	bis	10 V	10 Hz	bis	40 Hz	96 · 10⁻⁶ · <i>U</i> + 0,47 mV	
				> 40 Hz	bis	1 kHz	$94\cdot 10^{ ext{-6}}\cdot U$ + 0,25 mV	
				> 1 kHz	bis	20 kHz	0,17 \cdot 10 ⁻³ \cdot U + 0,25 mV	
				> 20 kHz	bis	50 kHz	0,36 \cdot 10 ⁻³ \cdot U + 0,27 mV	
				> 50 kHz	bis	100 kHz	0,93 \cdot 10 ⁻³ \cdot U + 0,28 mV	
	> 10 V	bis	100 V	10 Hz	bis	40 Hz	$0,25 \cdot 10^{-3} \cdot U + 4,7 \text{ mV}$	
				> 40 Hz	bis	1 kHz	0,24 \cdot 10 ⁻³ \cdot U + 2,5 mV	
				> 1 kHz	bis	20 kHz	0,24 \cdot 10 ⁻³ \cdot U + 2,5 mV	
				> 20 kHz	bis	50 kHz	$0,41 \cdot 10^{-3} \cdot U$ + 2,9 mV	
				> 50 kHz	bis	100 kHz	1,4 \cdot 10 ⁻³ \cdot U + 3,5 mV	
	> 100 V	bis	700 V	40 Hz	bis	1 kHz	$0,49 \cdot 10^{-3} \cdot U + 24 \text{ mV}$	
				> 1 kHz	bis	20 kHz	0,72 \cdot 10 ⁻³ \cdot U + 24 mV	
				> 20 kHz	bis	50 kHz	1,4 \cdot 10 ⁻³ \cdot U + 25 mV	

Gültig ab: 14.07.2023 Ausstellungsdatum: 14.07.2023

Seite 12 von 15

¹ Wenn nicht anders angegeben, entspricht die Einheit einer Variablen der Einheit des Messbereichs.

Vor-Ort-Kalibrierung

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Mes	sberei ssspar	ich /	Messbe		ungen /	Erweiterte Messunsicherheit ¹	Bemerkungen
Wechselspannung Messgeräte	100 mV	bis	220 mV	40 Hz > 20 kHz > 50 kHz	bis bis bis	20 kHz 50 kHz 100 kHz	$0.5 \cdot 10^{-3} \cdot U$ $0.7 \cdot 10^{-3} \cdot U$ $1.5 \cdot 10^{-3} \cdot U$	U = Messwert mit Fluke 5700A
	> 220 mV	bis	2,2 V	40 Hz > 20 kHz > 50 kHz	bis bis bis	20 kHz 50 kHz 100 kHz	$\begin{array}{l} \textbf{0,2} \cdot \textbf{10}^{-3} \cdot U \\ \textbf{0,3} \cdot \textbf{10}^{-3} \cdot U \\ \textbf{0,8} \cdot \textbf{10}^{-3} \cdot U \end{array}$	
	> 2,2 V	bis	22 V	40 Hz > 20 kHz > 50 kHz	bis bis bis	20 kHz 50 kHz 100 kHz	$\begin{array}{l} \textbf{0,2} \cdot \textbf{10}^{-3} \cdot U \\ \textbf{0,3} \cdot \textbf{10}^{-3} \cdot U \\ \textbf{0,6} \cdot \textbf{10}^{-3} \cdot U \end{array}$	
	> 22 V	bis	220 V	40 Hz > 20 kHz > 50 kHz	bis bis bis	20 kHz 50 kHz 100 kHz	$0,3 \cdot 10^{-3} \cdot U$ $0,6 \cdot 10^{-3} \cdot U$ $1,5 \cdot 10^{-3} \cdot U$	
	> 220 V	bis	1100 V	50 Hz	bis	1 kHz	0,5 \cdot 10 ⁻³ \cdot U	
	33 mV	bis	330 mV	45 Hz > 10 kHz > 20 kHz	bis bis bis	10 kHz 20 kHz 50 kHz	$0,35 \cdot 10^{-3} \cdot U + 25 \mu\text{V}$ $0,8 \cdot 10^{-3} \cdot U + 29 \mu\text{V}$ $1,1 \cdot 10^{-3} \cdot U + 70 \mu\text{V}$	U = Messwert mit Fluke 5502A
	> 330 mV	bis	3,3 V	45 Hz > 10 kHz > 20 kHz	bis bis bis	10 kHz 20 kHz 50 kHz	$0,35 \cdot 10^{-3} \cdot U + 70 \ \mu V$ $0,81 \cdot 10^{-3} \cdot U + 75 \ \mu V$ $1,2 \cdot 10^{-3} \cdot U + 85 \ \mu V$	
	> 3,3 V	bis	33 V	45 Hz > 10 kHz > 20 kHz	bis bis bis	10 kHz 20 kHz 50 kHz	$\begin{array}{l} \text{0,35} \cdot 10^{\text{-3}} \cdot U + \text{0,7 mV} \\ \text{0,81} \cdot 10^{\text{-3}} \cdot U + \text{0,7 mV} \\ \text{1,2} \cdot 10^{\text{-3}} \cdot U + \text{0,7 mV} \end{array}$	
	> 33 V	bis	330 V	45 Hz 1 kHz > 10 kHz > 20 kHz	bis bis bis bis	1 kHz 10 kHz 20 kHz 50 kHz	$\begin{array}{l} \text{0,58} \cdot 10^{\text{-3}} \cdot U + \text{3,5 mV} \\ \text{0,92} \cdot 10^{\text{-3}} \cdot U + \text{11 mV} \\ \text{1,1} \cdot 10^{\text{-3}} \cdot U + \text{11 mV} \\ \text{1,4} \cdot 10^{\text{-3}} \cdot U + \text{11 mV} \end{array}$	
	> 330 V	bis	1020 V	45 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	$\begin{array}{c} \textbf{0,65} \cdot \textbf{10}^{-3} \cdot U \\ \textbf{1} \cdot \textbf{10}^{-3} \cdot U \\ \textbf{1,1} \cdot \textbf{10}^{-3} \cdot U \end{array}$	
Wechselstromstärke Quellen	1 mA	bis	10 mA	20 Hz > 45 Hz > 100 Hz	bis bis bis	45 Hz 100 Hz 5 kHz	$2 \cdot 10^{-3} \cdot I + 2,5 \mu A$ $0,7 \cdot 10^{-3} \cdot I + 2,5 \mu A$ $0,4 \cdot 10^{-3} \cdot I + 2,5 \mu A$	I = Messwert mit Agilent 3458A
	> 10 mA	bis	100 mA	20 Hz > 45 Hz > 100 Hz	bis bis bis	45 Hz 100 Hz 5 kHz	1,8 · 10^{-3} · I + 25 μA 0,7 · 10^{-3} · I + 25 μA 0,38 · 10^{-3} · I + 25 μA	
	> 100 mA	bis	1 A	20 Hz > 45 Hz > 100 Hz	bis bis bis	45 Hz 100 Hz 5 kHz	$2 \cdot 10^{-3} \cdot I + 0,25 \text{ mA}$ $0,95 \cdot 10^{-3} \cdot I + 0,25 \text{ mA}$ $1,2 \cdot 10^{-3} \cdot I + 0,25 \text{ mA}$	

Gültig ab: 14.07.2023 Ausstellungsdatum: 14.07.2023

Seite 13 von 15

¹ Wenn nicht anders angegeben, entspricht die Einheit einer Variablen der Einheit des Messbereichs.

Vor-Ort-Kalibrierung

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Mes	sberei ssspan	ch /	Messbe	U	ingen /	Erweiterte Messunsicherheit ¹	Bemerkungen
Wechselstromstärke Messgeräte	100 μΑ		220 μΑ	40 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	0,5 · 10 ⁻³ · <i>I</i> 1,5 · 10 ⁻³ · <i>I</i> 3,5 · 10 ⁻³ · <i>I</i>	I = Messwert mit Fluke 5700A
	> 220 μA	bis	2,2 mA	40 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	0,65 · 10 ⁻³ · <i>I</i> 4 · 10 ⁻³ · <i>I</i> 8 · 10 ⁻³ · <i>I</i>	
	> 2,2 mA	bis	220 mA	40 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	0,5 · 10 ⁻³ · <i>I</i> 4 · 10 ⁻³ · <i>I</i> 8 · 10 ⁻³ · <i>I</i>	
	> 220 mA	bis	2,2 A	40 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	1,2 · 10 ⁻³ · <i>I</i> 3 · 10 ⁻³ · <i>I</i> 15 · 10 ⁻³ · <i>I</i>	
	> 2,2 A	bis	20 A	40 Hz > 1 kHz	bis bis	1 kHz 5 kHz	$0.8 \cdot 10^{-3} \cdot I + 1.5 \text{ mA}$ $4 \cdot 10^{-3} \cdot I + 7 \text{ mA}$	mit Fluke 5220A
	100 μΑ	bis	330 μΑ	45 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	1,5 · 10 ⁻³ · <i>I</i> + 0,12 μA 3,5 · 10 ⁻³ · <i>I</i> + 0,18 μA 9,3 · 10 ⁻³ · <i>I</i> + 0,24 μA	I= Messwert mit Fluke 5502A
	> 330 µA	bis	3,3 mA	45 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	1,2 · 10 ⁻³ · <i>I</i> + 0,17 μA 2,3 · 10 ⁻³ · <i>I</i> + 0,23 μA 5,8 · 10 ⁻³ · <i>I</i> + 0,35 μA	
	> 3,3 mA	bis	33 mA	45 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	$0,47 \cdot 10^{-3} \cdot I + 2,4$ μA $0,92 \cdot 10^{-3} \cdot I + 2,5$ μA $2,3 \cdot 10^{-3} \cdot I + 3,5$ μA	
	> 33 mA	bis	330 mA	45 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	$0,47 \cdot 10^{-3} \cdot I + 24$ μA $1,2 \cdot 10^{-3} \cdot I + 60$ μA $2,3 \cdot 10^{-3} \cdot I + 0,12$ mA	
	> 330 mA	bis	1,1 A	45 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	0,58 \cdot 10 ⁻³ \cdot I + 0,12 mA 6,9 \cdot 10 ⁻³ \cdot I + 1,2 mA 29 \cdot 10 ⁻³ \cdot I + 5,8 mA	
	> 1,1 A	bis	3 A	45 Hz > 1 kHz > 5 kHz	bis bis bis	1 kHz 5 kHz 10 kHz	$0.7 \cdot 10^{-3} \cdot I + 0.12$ μA $7 \cdot 10^{-3} \cdot I + 1.2$ mA $29 \cdot 10^{-3} \cdot I + 5.8$ mA	
	> 3 A	bis	11 A	45 Hz > 100 Hz > 1 kHz	bis bis bis	100 Hz 1 kHz 5 kHz	0,72 \cdot 10 ⁻³ \cdot I + 2,3 mA 1,2 \cdot 10 ⁻³ \cdot I + 2,3 mA 35 \cdot 10 ⁻³ \cdot I	
	> 11 A	bis	20,5 A	45 Hz > 100 Hz > 1 kHz	bis bis bis	100 Hz 1 kHz 5 kHz	$1,4 \cdot 10^{-3} \cdot I + 5,8 \text{ mA}$ $1,8 \cdot 10^{-3} \cdot I + 5,8 \text{ mA}$ $35 \cdot 10^{-3} \cdot I$	

Gültig ab: 14.07.2023 Ausstellungsdatum: 14.07.2023

Seite 14 von 15

¹ Wenn nicht anders angegeben, entspricht die Einheit einer Variablen der Einheit des Messbereichs.

Vor-Ort-Kalibrierung

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne		Messbedingungen / Verfahren	Erweiterte Messunsicherheit ¹	Bemerkungen
Länge Vertikale Längenmessgeräte *	0 mm bis	610 mm	VDI/VDE/DGQ 2618 Blatt 16.1:2009	1,7 μm + 3 · 10 ⁻⁶ · <i>l</i>	l = gemessene Länge
Geradheits- und Rechtwinkligkeits- abweichung	bis	30 μm	bis 500 mm Führungslänge	1,9 μm + 3 · 10 ⁻⁶ · <i>l</i> _z	l_z =Führungslänge

Verwendete Abkürzungen:

AA	Kalibrieranweisung	g der MK-Kalibrierlabor G	mbH

CMC Calibration and measurement capabilities (Kalibrier- und Messmöglichkeiten)

DGQ Deutsche Gesellschaft für Qualität e. V. DIN Deutsches Institut für Normung e. V.

DKD Deutscher Kalibrierdienst

VDE Verband der Elektrotechnik, Elektronik und Informationstechnik e. V.

VDI Verein Deutscher Ingenieure e. V.

¹ Wenn nicht anders angegeben, entspricht die Einheit einer Variablen der Einheit des Messbereichs.

Gültig ab: 14.07.2023 Ausstellungsdatum: 14.07.2023

Seite 15 von 15

Deutsche Akkreditierungsstelle

Anlage zur Teil-Akkreditierungsurkunde D-K-18366-01-02 nach DIN EN ISO/IEC 17025:2018

Gültig ab: 14.07.2023 Ausstellungsdatum: 14.07.2023

Diese Urkundenanlage ist Bestandteil der Akkreditierungsurkunde D-K-18366-01-00.

Inhaber der Teil-Akkreditierungsurkunde:

MK-Kalibrierlabor GmbH Madridstraße 2, 97424 Schweinfurt

Das Kalibrierlaboratorium erfüllt die Anforderungen gemäß DIN EN ISO/IEC 17025:2018, um die in dieser Anlage aufgeführten Konformitätsbewertungstätigkeiten durchzuführen. Das Kalibrierlaboratorium erfüllt gegebenenfalls zusätzliche gesetzliche und normative Anforderungen, einschließlich solcher in relevanten sektoralen Programmen, sofern diese nachfolgend ausdrücklich bestätigt werden.

Die Anforderungen an das Managementsystem in der DIN EN ISO/IEC 17025 sind in einer für Kalibrierlaboratorien relevanten Sprache verfasst und stehen insgesamt in Übereinstimmung mit den Prinzipien der DIN EN ISO 9001.

Kalibrierungen in den Bereichen:

Mechanische Messgrößen

Druck

Für die mit * gekennzeichneten Messgrößen/Kalibriergegenstände ist dem Kalibrierlaboratorium, ohne dass es einer vorherigen Information und Zustimmung der DAkkS bedarf, die Anwendung der hier aufgeführten Normen/Kalibrierrichtlinien mit unterschiedlichen Ausgabeständen gestattet.

Das Kalibrierlaboratorium verfügt über eine aktuelle Liste aller Normen/Kalibrierrichtlinien im flexiblen Akkreditierungsbereich.

Diese Urkundenanlage gilt nur zusammen mit der schriftlich erteilten Urkunde und gibt den Stand zum Zeitpunkt des Ausstellungsdatums wieder. Der jeweils aktuelle Stand der gültigen und überwachten Akkreditierung ist der Datenbank akkreditierter Stellen der Deutschen Akkreditierungsstelle zu entnehmen (www.dakks.de)

Verwendete Abkürzungen: siehe letzte Seite Seite Seite 1 von 2

Permanentes Laboratorium

Kalibrier- und Messmöglichkeiten (CMC)

Messgröße / Kalibriergegenstand	Messbereich / Messspanne		Messbedingungen / Verfahren	Erweiterte Messunsicherheit ¹	Bemerkungen
Druck *					
positiver Überdruck $p_{ m e}$	0 bar; 1 bar bis	60 bar	DKD-R 6-1:2014	$2.0\cdot 10^{-4}\cdot p_{ m e}$, jedoch nicht < 8 mbar	Druckmedium: Öl $p_e = Messwert$
	> 60 bar bis	700 bar		$2.0 \cdot 10^{-4} \cdot p_{\rm e}$, jedoch nicht < 29 mbar	

Verwendete Abkürzungen:

CMC Calibration and measurement capabilities (Kalibrier- und Messmöglichkeiten)

DKD-R Kalibrierrichtlinie des Deutschen Kalibrierdienstes,

herausgegeben von der Physikalisch-Technischen Bundesanstalt

¹Wenn nicht anders angegeben, entspricht die Einheit einer Variablen der Einheit des Messbereichs.

Gültig ab: 14.07.2023 Ausstellungsdatum: 14.07.2023

Seite 2 von 2